Information for the correct steel selection

SPECIAL GRADES FOR ROLLS

To increase the lifetime of your rolls
RUN IN YOUR LEVELER

Chromium: For better wear resistance.
Molybdenum: Improve surface hardness.
Vanadium: Increase toughness and flexibility.

BSA HEAT TREATMENT FACILITIES

VERTICAL HARDENING
Ø 2500x8000 mm - 60 tons

STATIC DEEP HARDENING
Ø 1200x4000 mm - 20 tons

HORIZONTAL HARDENING
Ø 1400x16000 mm - 120 tons

High Frequency
Medium Frequency
Double Frequency
Laser Hardening
Furnace Hardening

B.S.A. S.r.l. - Via Tirso, 33 - 20098 S. Giuliano Milanese (MI) - Italy
Tel. +39 02.9828.4024 - Fax +39 02.9828.9887 - E-Mail: bsa@termostahl.it - www.bsarolls.it
MATERIAL PROPERTIES

Influence of elements in steel chemistry

C:
Carbon is the most relevant element to control hardness characteristics, it is necessary to guarantee the correct martensitic transformation.
Caution:
- High C rate can lead to reduced toughness and is the principal cause of brittleness.
- High C rate can give final undesired metallic structures leading to lack of wear resistance
- High C rate is responsible of thermal shock sensibility and heating cracks propagation.

Cr:
- Chromium carbides increase wear resistance, evenly increase the hardenability, break corrosion phenomena at high temperature, decarburization and oxides, increase mechanical characteristics at high temperature conditions, improve polishability.

Mo:
- Molybdenum is responsible for steel hardenability, increases surface hardening depth because it decreases the critical cooling rate, guarantees uniformity for cross-section hardneress, helps to keep small the austentitic grain during heating leading to fine martensitic structure.

V:
- Vanadium is responsible for high yield strength and elongation and increases compressive strength, giving steel the best toughness and shock resistance capabilities; further increases wear resistance and helps to guarantee low grain size after hardening.

Ni:
- Nickel increases the mechanical characteristic leading to high tensile strength materials, slightly helps hardenability and increases impact strength.

BSA cold working grades:

<table>
<thead>
<tr>
<th>Material DIN</th>
<th>Werkstoff N°</th>
<th>Cr</th>
<th>Mo</th>
<th>V%</th>
<th>Surface Hardness</th>
<th>Tensile strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>51CrMoV4</td>
<td>1.7701</td>
<td>1.1</td>
<td>0.2</td>
<td>0.1</td>
<td>64 —> 66 HRC</td>
<td>860 —> 1100 N/mm²</td>
</tr>
<tr>
<td>58CrMoV4</td>
<td>1.7792</td>
<td>1.1</td>
<td>0.2</td>
<td>0.1</td>
<td>64 —> 66 HRC</td>
<td>900 —> 1200 N/mm²</td>
</tr>
<tr>
<td>86CrMoV7</td>
<td>1.2327</td>
<td>1.8</td>
<td>0.3</td>
<td>0.1</td>
<td>64 —> 67 HRC</td>
<td>900 —> 1050 N/mm²</td>
</tr>
<tr>
<td>X63CrMoV5.1</td>
<td>1.2362</td>
<td>5.3</td>
<td>1.2</td>
<td>0.3</td>
<td>62 —> 64 HRC</td>
<td>860 —> 1000 N/mm²</td>
</tr>
<tr>
<td>X82CrMoV8.2</td>
<td>1.2390</td>
<td>7.8</td>
<td>1.6</td>
<td>2.5</td>
<td>60 —> 64 HRC</td>
<td>800 —> 1000 N/mm²</td>
</tr>
<tr>
<td>X155CrMoV12.1</td>
<td>1.2379</td>
<td>12</td>
<td>1.4</td>
<td>1.6</td>
<td>60 —> 63 HRC</td>
<td>800 —> 1000 N/mm²</td>
</tr>
</tbody>
</table>

INSPECTION

Metallurgical Laboratory

MATERIAL ANALYSIS

Hard and wear resistant

MEDIUM FREQUENCY
Induction Hardening - Depth 3÷30 mm

ROLLS CROSS SECTION
Sample Test

HIGH FREQUENCY
Induction Hardening - Depth 1÷4 mm

MARTENSITE STRUCTURE

TRANSITION

SORBITE STRUCTURE

Tough and flexible